

Welcome to GBDTMO’s documentation!

GBDTMO is a gradient boosted decision tree method which supports learning multiple outputs within a single tree. GBDTMO constructs the predicts of all outputs or a subset of automatically selected outputs on a leaf. Compared with GBDT for single output, GBDTMO has better generalization ability and faster training speed. See our paper [https://arxiv.org/abs/1909.04373] for technical details.

Contents:

	Python API
	load_lib

	create_graph

	GBDTMulti

	GBDTSingle

	Parameters
	Meta

	Tree

	Learning

	Examples
	Plotting tree

	Using GBDTMO

	Custom loss

Feel free to contact with us if you have any questions or suggestions.

Python API

load_lib

	load_lib(path)

	
	Parameters

	
	path (string): path of gbdtmo.so

	Return

	Python warper of gbdtmo.so

create_graph

	create_graph(file_name, tree_index=0, value_list=[])

	This function generate a Digraph instance of graphviz. You can render it by yourself.

	Parameters

	
	file_name (string): path of the dumped tree.

	tree_index (int): the index (start from 0) of tree to be plotted.

	value_list (list): list of index of output variables to be plotted. Only for GBDTMO. When set to [], all outputs variables will be considered.

	Return

	a Digraph instance of a learned tree.

GBDTMulti

	GBDTMulti(lib, out_dim=1, params={})

	Create an instance of GBDTMO model.

	__init__(lib, out_dim, params={})

	
	Parameters

	
	lib: a Python warper of library by load_lib.

	out_dim(int): dimension of output.

	params(dict): a set of parameters. If a parameter is not contained here, it is set to its default value.

	set_data(train_set=(), eval_set=())

	Set training and eval datasets. eval_set can be missing. Histograms will be constructed and predictions will be initialized.

	Parameters

	
	train_set(tuple): a tuple of numpy array (x_data, x_label). x_data must be double and 2D array. If you don’t set label, x_label should be None. Otherwise, x_label must be double or int32.

	eval_set(tuple, default=None): the same as train_set.

	_set_gh(self, g, h)

	Set gradient and hessian for growth next tree. Only used for user-defined loss.

	Parameters

	
	g(numpy.array): gradient

	h(numpy.array): hessian

	_set_label(x, is_train)

	Reset label. Sometimes it avoids the re-construction of histogram.

	Parameters

	
	x(numpy.array): labels.

	is_train(bool): if true, set labels for train_set else for eval_set.

	boost()

	Growth a new tree after running _set_gh.

	train(num)

	training the model from scratch.

	Parameters

	
	num(int): number of boost round.

	dump(path)

	dump the model into a text file which has the following structure:

Booster[i]:
 decision node M
 ...
 decision node 1
 leaf node 1
 ...
 leaf node N
Booster[i+1]:
 ...

For a decision node:

node index, parent, left, right, split column, split value

For a leaf node:

leaf index, w_0, w_1, ..., w_n

	Parameters

	
	path(string): must be binary coding. For example, b”tree.txt”.

	load(path)

	load the model from a text file.

	Parameters

	
	path(string): must be binary coding. For example, b”tree.txt”.

	predict(x, num_trees=0)

	
	Parameters

	
	x(numpy.array): input features

	num_trees(int): number of trees used to compute the prediction. If 0, all trees will be used.

	Return

	prediction of x.

GBDTSingle

GBDTSO is our own implementation of GBDT for single output. It is used to compare the training speed and accuracy with GBDTMO.

	GBDTSingle(lib, out_dim, params={})

	Create an instance of GBDTSO model. Most of method is shared with GBDTSO. Here we only list the specific methods of GBDTSO.

	train_multi(num)

	training the model from scratch.

	Parameters

	
	num(int): number of boost round. In each round, out_dim of trees will be constructed. They correspond to output variables in order.

	reset()

	clear the learned trees and re-initialize the predictions to base_score.

Parameters

This page contains descriptions of all parameters in GBDTMO.

Meta

	
	verbose: default = True, type = bool

	
	If True, print loss information every round. Otherwise, print nothing.

	
	seed: default = 0, type = int.

	
	Random seed. No effect currently.

	
	num_threads: default = 2, type = int.

	
	Number of threads for training.

	
	hist_cache: default = 16, type = int.

	
	Maximum number of histogram cache

	
	topk: default = 0.

	
	Sparse factors for sparse split finding.

	If 0, non-sparse split finding is used.

	
	one_side: default = True, type = bool.

	
	Algorithm type for sparse split finding.

	If True, the restricted one is used.

	Only used when topk not equal to 0.

	
	max_bins: default = 32, type = int.

	
	Maximum number of bins for each input variable.

Tree

	
	max_depth: default = 4, type = int.

	
	Maximum depth of trees, at least 1.

	
	max_leaves: default = 32, type = int.

	
	Maximum leaves of each tree.

	
	min_samples: default = 20, type = int.

	
	Minimum number of samples of each leaf.

	Stop growth if current number of samples smaller than this value.

	
	early_stop: default = 0, type = int.

	
	Number of rounds for early stop.

	If 0, early stop is not used.

Learning

	
	base_score: default = 0.0, type = double.

	
	Initial value of prediction.

	
	subsample: default = 1.0, type = double.

	
	Column sample rate. No effect currently.

	
	lr: default = 0.2, type = double.

	
	Learning rate.

	
	reg_l1: default = 0.0, type = double.

	
	L1 regularization.

	Not used for sparse split finding currently.

	
	reg_l2: default = 1.0, type = double.

	
	L2 regularization.

	
	gamma: default = 1e-3, type = double.

	
	Minimum objective gain to split.

	
	loss: default = ‘mse’, type = string.

	
	Must be binary coding. For example, b’mse’ in Python.

	Must be one of ‘mse’ (mean square error), ‘bce’ (binary cross entropy), ‘ce’ (cross entropy), and ‘ce_column’ (only for GBDTSingle).

Examples

Plotting tree

Suppose the model is dumped into gbdtmo.txt, plot 5th tree by:

>>> from gbdtmo import create_graph
>>> from graphviz import Digraph
>>> graph = create_graph("gbdtmo.txt", 5, [0, 3])
>>> graph.render("tree_5", format='pdf')

Then tree_5.pdf will be generated.

Using GBDTMO

First import gbdtmo

>>> from gbdtmo import GBDTMulti, load_lib

Load from gbdtmo.so

>>> LIB = load_lib("path to gbdtmo.so")

Build an instance of GBDTMO. Here the out_dim is set to 10 and MSE loss is used.

>>> inp_dim, out_dim = 10, 5
>>> params = {"max_depth": 5, "lr": 0.1, 'loss': b"mse"}
>>> booster = GBDTMulti(LIB, out_dim=out_dim, params=params)

Set the training and eval datasets.

>>> x_train, y_train = np.random.rand(10000, inp_dim), np.random.rand(10000, out_dim)
>>> x_valid, y_valid = np.random.rand(10000, inp_dim), np.random.rand(10000, out_dim)
>>> booster.set_data((x_train, y_train), (x_valid, y_valid))

Training with 30 rounds and dump it into text file.

>>> booster.train(30)
>>> booster.dump(b"tree.txt")

Custom loss

We show how to train GBDTMO via custom loss. Here is an example of MSE.

def MSE(x, y):
 g = x - y
 h = np.ones_like(x)
 return g, h

>>> g, h = MSE(booster.preds_train.copy(), booster.label.copy())
>>> booster._set_gh(g, h)
>>> booster.boost()

In this way, a new tree is constructed and the predictions are updated.

Index

 nav.xhtml

 Table of Contents

 		
 Welcome to GBDTMO’s documentation!

 		
 Python API

 		
 load_lib

 		
 create_graph

 		
 GBDTMulti

 		
 GBDTSingle

 		
 Parameters

 		
 Meta

 		
 Tree

 		
 Learning

 		
 Examples

 		
 Plotting tree

 		
 Using GBDTMO

 		
 Custom loss

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

